宇宙的运行机制
1.1 公理性基础
1.1.1 有限宇宙: 宇宙是一个具有固定体积的封闭系统,这意味着所有动力过程都必须在不无限增长的情况下重新分配物质与真空。
1.1.2 真空–等离子体(隐藏的以太): 真空本质上是一种不可感知的以太等离子体,是压力与能量的传递介质。由于其内部相互作用的自我补偿性,因此无法被直接探测。
1.1.3 夸克基: 唯一的基本粒子,具有完全致密、无内部空隙的结构。所有其他粒子均为夸克基的构型或组合形式。
1.1.4 压力相互作用: 每个夸克基都会排挤周围的真空等离子体,产生径向压力线,这是所有基本相互作用力的起源。
1.2 理论发展
1.2.1 基本力的起源:
根据夸克基宇宙学(Quarkbase Cosmology),所谓的“真空”并非严格意义上的空无空间或空洞, 而是由一种连续的等离子体压力介质构成。 也就是说,它是一种具有等离子特性的物质, 其特征为一个实标量场 Ψ(x, t), 用于描述以太等离子体的局部压力密度。
与理想气体或理想流体不同,这种介质具有各向异性弹性和自组织能力, 从而允许形成相干的压力线与压力丝结构, 这些结构不会消散或均匀分布。 这些压力线作为场Ψ的传输通道, 能够弯曲、缠绕,并储存形变能量。
每个夸克基(quarkbase)可解释为一个以太等离子体中的致密位移区域, 其周围环境形成一组交织、扭转并以特征频率振动的压力线系统。 以太等离子体的总体体积保持守恒, 因此由夸克基引起的局部形变通过压力梯度得以补偿, 从而根据其相位、速度或共振状态产生引力或斥力效应。
这些耦合的稳定构型产生了基本夸克, 而多个夸克基之间的集体共振则形成质子、中子及其他粒子。 在更大尺度上,压力线的几何变化 进一步生成电磁力与核力, 作为同一场 Ψ 的涌现效应。
– 引力: 并非远程吸引,而是由于等离子体的再分布,将物体推向夸克基密集区域。
– 电磁力: 夸克基的振动态构型使等离子体产生压力波(光子)。
– 核力: 当压力线相互渗透并发生阻断时产生结合效应(强力),或形成平衡张力(弱力)。
1.2.2 物质与能量: 物质是夸克基的结构化状态;能量则是等离子体中的压力波。E = mc² 的等价性源于:夸克基的复合结构可分解为压力波,反之亦然。
1.2.3 宇宙学: 宇宙并未真正膨胀;观测到的“膨胀”实际上是等离子体密度变化导致光线路径偏移的结果。宇宙的边界是高压区域,光的轨迹在此闭合。
最小表述
该理论可归纳为四个关键方程:
基本解:类 Yukawa 形式
对于处于以太等离子体中的孤立夸克基,其压力势的解为类 Yukawa 形式:
这些表达式展示了夸克基之间的相互作用如何再现引力及其他基本力的形式, 并包含由屏蔽长度 \(\lambda\) 引起的修正项。
基础原理
宇宙是有限的,并保持总体积恒定。以太等离子体具有密度与可压缩性; 夸克基与该等离子体的相互作用产生压力势函数 Ψ, 其作为引力及其他基本相互作用的涌现性起源。
关键概念
- 总体积守恒: 夸克基的数量与体积及等离子体密度之间存在一个全局约束条件。
- 压力场 Ψ: 一种满足带有屏蔽项(特征长度 λ)的 Klein–Gordon 型方程的相对论标量场。
- 涌现力: 夸克基之间的有效相互作用力与 Ψ 的梯度成正比; 在适当的尺度极限下,该关系可再现牛顿引力定律。
关键论文
夸克基宇宙学中的相对论不变性与实验约束
本文证明,洛伦兹对称性在夸克基(Quarkbase)基本场中以局部且有效的方式出现,并且该模型与当前最精确的相对论实验测试完全一致,符合标准模型扩展(Standard-Model Extension, SME)的现有限制。
夸克基理论相对论不变性的再确认:数学详细分析
本文对夸克基宇宙学(Quarkbase Cosmology)的理论框架进行了系统的回顾与数学形式化, 旨在严格评估其与相对论不变性之间的兼容性。
Article Synopsis
Genesis Quarkbase A New Genesis for Physics A Manifesto for the Twenty-First Century
This work explains the origin of the fundamental forces — gravitational, electromagnetic, strong, and weak — as manifestations of a single governing principle: the global conservation of etheric volume. It reproduces atomic constants such as the Rydberg value and hydrogen binding energy, and introduces an alternative method of fission based on resonance of the etheric pressure field, equivalent in energy to conventional nuclear fission but founded on a different physical mechanism. It also predicts the next element in the periodic table (Z ≈ 155), derived from the quantized sequence of quarkbase closures.
Complex Formalism in Quarkbase Cosmology: Unified Description of Gravitational, Electromagnetic, and Quantum Interactions
This research extends the QuarkBase Cosmology into the complex domain, demonstrating that the mathematical representation through complex numbers does not alter the physical foundations of the theory but rather unifies, within a single analytical structure, the gravitational, electromagnetic, and quantum phenomena. The complex formalism allows one to express in a single function, \\( \Psi(x, t) = A e^{i(\omega t - \mathbf{k}\cdot\mathbf{x})} \\), the longitudinal (pressure) and transverse (vorticity) components of the etheric plasma, simplifying differential derivatives and revealing the intrinsic nature of the field oscillations. It is shown that Maxwell’s equations can be reformulated as a complex wave equation of the etheric plasma, in which the real part represents electric pressure and the imaginary part magnetic vorticity, while the formalism strictly preserves Lorentz invariance. Finally, the framework is applied to the nucleus–electron resonance in hydrogen, deriving its coupling frequency directly from the phase conditions of the complex field and demonstrating the coherence of the QuarkBase model from the subatomic to the relativistic scale.
Empirical evidence for the existence of an etheric vacuum exhibiting plasmatic properties
This study presents an empirical and theoretical framework supporting the ex- istence of an etheric vacuum with plasmatic characteristics, as predicted by the QuarkBase Cosmology. Using the historical parameters of Tonomura’s 1989 single-electron double-slit experiment, we reproduce the observed interference patterns under the assumption that the vacuum behaves as a continuous pres- sure field (Ψ) rather than as an empty background. The model introduces two measurable parameters—the screening length (λ) and the decoherence rate (Γφ)—which describe, respectively, the attenuation of the pressure wave through the etheric medium and the loss of coherence induced by detector coupling. Numerical simulations yield λ ≈ 5 m and Γφ ≈ 80 s−1, providing an accu- rate quantitative match to Tonomura’s recorded interference build-up while offer- ing a causal, physically interpretable mechanism. The results demonstrate that the QuarkBase formulation can reproduce the same experimental data as stan- dard quantum mechanics without invoking non-causal collapse postulates. Instead, the interference pattern arises from the redistribution of etheric pressure within a frictionless but compressible medium, suggesting that space itself possesses measurable mechanical structure.
Quantum Entanglement in Quarkbase Cosmology
Proposes that quantum entanglement is a consequence of shared pressure channels in the plasma ether, explaining instantaneous correlations without superluminal transmission.
The Next Electromagnetic Revolution: Maxwell’s Equations in the Framework of Quarkbase Cosmology
The Quarkbase theory reformulates the foundations of electromagnetic interaction by interpreting classical fields not as abstract entities in empty space, but as pressure distributions within a continuous, frictionless plasma that permeates the universe. In this framework, Maxwell’s equations acquire a physical substrate: they describe the reorganization of pressure lines in this hidden medium rather than mere mathematical relations among charges and currents. This reinterpretation preserves the predictive power of classical electromagnetism while providing a consistent field-based foundation for potential extensions and experimental tests.
Simultaneous Enhancement of Electrical and Thermal Conductivity in Graphene through Excitation of the Etheric Longitudinal Mode
Within the framework of the Quarkbase Cosmology, electromagnetic and transport phenomena arise from longitudinal pressure waves in an etheric medium described by the scalar field Ψ(x, t). When an excitation in the terahertz or mid-infrared range (10–60 THz) couples resonantly to the longitudinal mode of this field, the coherence of both charge and heat carriers in graphene increases simultaneously. The predicted result is a reversible and correlated enhancement of the electrical conductivity σ and the thermal conductivity κ, a distinctive signature of the etheric longitudinal mode acting as a unifying coupling channel.
Curvature-Tunable Absorbance in Graphene: A Quarkbase-Cosmology Prediction
Within the framework of Quarkbase Cosmology, electromagnetic propagation arises from longitu- dinal pressure waves of a frictionless etheric plasma (Ψ-field). This theory predicts that the universal optical absorbance of monolayer graphene (A ≈ πα) should vary linearly with biaxial strain or mean curvature, due to changes in the local density of etheric pressure channels that guide the propagation of light. The expected dependence is ∆A/A ≃ 10−3–10−2 per % strain. Verification of this small but measurable effect would provide a direct falsifiable test of the Quark- base description of electromagnetic phenomena as pressure dynamics in an incompressible etheric medium.
The Quarkbase Cosmology Explanation of Superconductivity and Thermal Hyperconductivity in Graphene
This work presents a unified mechanism for superconductivity and thermal hyperconductivity in graphene within the framework of Quarkbase Cosmology (QBC), which models space as a frictionless etheric plasma governed by a scalar pressure field Ψ(x,t). In this view, graphene acts as a two-dimensional resonant cavity for Ψ, where phase coherence produces nondissipative electric currents without requiring Cooper pairing. An effective Ginzburg–Landau formulation and a Berezinskii–Kosterlitz–Thouless analysis yield critical temperatures of 1–10 K, consistent with experimental data. The same Ψ-field coherence explains graphene’s extraordinary thermal conductivity (>5000 W/m·K) as pressure-energy transport within the etheric medium. Overall, the work unifies graphene’s electrical and thermal behavior as two observable manifestations of phase and amplitude coherence in the underlying Ψ field.
Etheric Vacuum Pressure Sensor (SEP-V1): an interferometric system for detecting and converting energy through pressure gradients of the Ψ field
The SEP-V1 proposes an experimental device capable of detecting, amplifying, or eventually converting variations in the pressure of the Ψ field into measurable changes in optical phase or intensity. This system enables the experimental validation of dynamic anisotropies in vacuum density and allows the exploration of their potential energy conversion.
Coherent Pressure Quarkic Battery (Ψ-Cell)
This study reports the design and experimental validation of a Coherent Pressure Quarkic Battery (Ψ-Cell), a solid-state device that converts pressure fields of the etheric plasma into electric potential within multilayer graphene–dielectric structures. Exploiting the coherence of the scalar field Ψ, the system produces a voltage proportional to the pressure gradient without chemical or mechanical reactions. The prototype, comprising 500 active layers and a pressure-dependent RLC model with PLL–MPPT control, achieved 1–5 W output power, over 90 % efficiency, and excellent thermal stability (ΔT < 5 °C). These results demonstrate a new class of solid-state energy storage based on coherent vacuum pressure for ultra-low-dissipation electronics and autonomous quarkic energy systems.
The Geometry of Galaxies
Explores how the structure of galaxies is interpreted in terms of plasma ether pressure and global volume conservation. Suggests that spiral distribution and flattening result from Ψ field stresses.
Redshift in Quarkbase Theory
Reinterprets redshift as an effect of variations in plasma ether density and pressure wave propagation, rather than metric expansion of space.
Superclusters in Quarkbase Theory
Presents a model for supercluster formation through redistributions of ether pressure, without invoking dark matter as the primary explanation.
Hawking Radiation in Quarkbase Cosmology
Offers an alternative interpretation of Hawking radiation, linking it to pressure redistributions in the plasma ether around event horizons.
Microwave Background in Quarkbase Cosmology
Explains the cosmic microwave background as an equilibrium state of the plasma ether, rather than a thermal remnant of the Big Bang. Predicts anisotropies related to pressure fluctuations.
Quasars in Quarkbase Cosmology
Interprets quasars as high-energy resonators where ether pressure lines produce intense and persistent emissions, without requiring extreme accretion.
CMB Expansion in Quarkbase Extended Theory
Proposes that apparent signals of cosmic expansion in the CMB are due to density variations in the plasma ether, reinterpreting observations without an inflationary Big Bang.
Explaining Quark Flavors and Masses through Quarkbase Cosmology
It explains the structure of matter by modeling quarks as resonant systems composed of fundamental vibrating units, and provides a framework for understanding mass, flavor, and the dynamic nature of the quantum vacuum.
Biomedical Applications
Biomedical Advances with Quarkbase Theory
Explores potential biomedical applications of the theory, including interpretations of cellular resonance, molecular dynamics, and proposals for diagnosis or therapy based on the plasma ether.
Biomedical Applications: Cancer and Quarkbase Cosmology
Analyzes the dynamics of cancer cells from the plasma ether perspective, suggesting alternative models of proliferation and potential therapeutic research pathways.
预测与应用
概述从夸克基理论框架中得出的可观测预测及潜在技术发展。
- 以太压力波: 可能在高精度探测器及天文现象中观测到(脉冲星、快速射电暴)。
- 引力修正: 在屏蔽长度 λ 的尺度下,1/r² 引力定律可能出现偏差。
- 技术应用: 高级推进技术、等离子计算、基于与等离子体耦合的间接传感器。
联系与合作
支持本研究
您可以通过 Bizum 或 PayPal 进行捐助,以帮助维持该独立宇宙学项目的持续运行。
使用 PayPal 捐赠