Evrenin İşleyişi
1.1 Aksiyomatik Temeller
1.1.1 Sonlu Evren: Kozmos, sabit hacimli kapalı bir konteynerdir; bu, tüm dinamiklerin madde ve boşluğu sınırsız büyüme olmadan yeniden dağıtması gerektiği anlamına gelir.
1.1.2 Boşluk–Plazma (Gizli Eter): Boşluk, aslında algılanamayan eterik bir plazmadır ve basınç ile enerjinin iletim ortamını oluşturur. İç etkileşimleri kendi içinde dengelendiği için tespit edilemez.
1.1.3 Quarkbase: Tekil, kompakt ve iç boşluğu olmayan temel parçacık. Diğer tüm parçacıklar quarkbase’lerin yapılandırmaları veya birleşimlerinden oluşur.
1.1.4 Basınç Yoluyla Etkileşim: Her quarkbase plazma-boşluğu yer değiştirir ve etrafında radyal basınç çizgileri oluşturur; bu çizgiler temel kuvvetlerin kaynağıdır.
1.2 Teorik Gelişim
1.2.1 Kuvvetlerin Kökeni:
Quarkbase Kozmolojisi’ne göre, sözde “boşluk” tam anlamıyla boş bir alan, bir boşluk değildir; bunun yerine, bir plazma basıncı süreklilik ortamından oluşur. Yani, plazma benzeri özelliklere sahip bir madde olup, Ψ(x, t) şeklinde tanımlanan gerçek bir skaler alan tarafından karakterize edilir; bu alan, eterik plazmanın yerel basınç yoğunluğunu tanımlar.
Bu ortam, ideal bir gaz veya akışkandan farklı olarak, anizotropik elastisiteye ve öz-organizasyon yeteneğine sahiptir. Bu özellikler, homojen şekilde dağılmayan ve sönümlenmeyen koherent basınç çizgileri ve filamentlerin oluşumuna izin verir. Bu çizgiler, Ψ alanının iletim kanalları olarak davranır; eğrilme, birbirine dolanma ve deformasyon enerjisini depolama yeteneğine sahiptirler.
Her bir quarkbase, eterik plazmanın kompakt bir yer değiştirme bölgesi olarak yorumlanır. Bu bölgenin çevresi, birbirine dolanmış, burulmuş ve karakteristik bir frekansta titreşen bir basınç çizgileri sistemi üretir. Eterik plazmanın toplam hacmi korunur; dolayısıyla quarkbase’lerin neden olduğu yerel deformasyonlar, faz, hız veya rezonansa bağlı olarak çekim veya itme etkileri oluşturan basınç gradyanları yoluyla dengelenir.
Bu bağlaşmaların kararlı konfigürasyonları temel kuarkları oluşturur; birden fazla quarkbase arasındaki kolektif rezonanslar ise protonlar, nötronlar ve diğer parçacıkları meydana getirir. Geniş ölçekli basınç çizgilerinin geometrik varyasyonları da aynı Ψ alanının ortaya çıkan etkileri olarak elektromanyetik ve nükleer kuvvetleri üretir.
– Yerçekimi: uzak mesafeden çekim değildir; plazmanın yeniden dağılımı ile cisimleri quarkbase yoğunluklarına doğru iter.
– Elektromanyetizma: quarkbase’in titreşimsel konfigürasyonları plazmayı basınç dalgaları (fotonlar) şeklinde deforme eder.
– Nükleer Kuvvetler: basınç çizgilerinin birbirine geçmesi ve bloke olmasıyla ortaya çıkar; yapıştırıcı etkisi (güçlü kuvvet) veya denge gerilmeleri (zayıf kuvvet) oluşturur.
1.2.2 Madde ve Enerji: Madde, quarkbase’lerin yapılandırılmış bir durumudur. Enerji, plazmadaki basınç dalgalarıdır. E = mc² eşitliği, quarkbase yapılarının basınç dalgaları oluşturarak bölünebilmesi ve tersiyle türetilebilir.
1.2.3 Kozmoloji: Evren genişlemez; genişleme olarak gördüğümüz, plazma yoğunluğundaki değişimin ışığın yolunu değiştirmesidir. Sınırlar, yolların kapanmasıyla karakterize edilen sıkışma bölgeleridir.
Minimal Formülasyon
Teori dört temel denklemle özetlenir:
Temel Çözüm: Yukawa Tipi
Plazma-eterinde izole bir quarkbase için basınç potansiyelinin çözümü Yukawa tipindedir:
Bu ifadeler, quarkbase’ler arasındaki etkileşimin yerçekimi ve diğer kuvvetlerin şeklini nasıl yeniden ürettiğini, \(\lambda\) ekranlama uzunluğuna bağlı düzeltmelerle birlikte gösterir.
Fundamentos
El universo es finito y mantiene un volumen total constante. El plasma-etérico posee densidad y compressibilidad; la interacción entre quarkbases y ese plasma genera un potencial de presión Ψ que actúa como origen emergente de la gravedad y de otras fuerzas.
Conceptos clave
- Conservación global de volumen: el número y volumen de quarkbases y la densidad del plasma están relacionados por una condición global.
- Campo de presión Ψ: campo escalar relativista que satisface una ecuación tipo Klein–Gordon con apantallamiento (longitud λ).
- Fuerzas emergentes: la fuerza efectiva entre quarkbases es proporcional al gradiente de Ψ; en el régimen adecuado reproduce la ley newtoniana a grandes distancias.
Artículos clave
Cosmología del Quarkbase
Documento base que define los axiomas, las ecuaciones mínimas (campo Ψ, fuerza emergente, conservación de volumen) y propone experimentos para falsación.
La doble rendija en la Cosmología del Quarkbase
Describe cómo la interferencia y la detección puntual se explican por la densidad de energía del campo y mecanismos de auto-focalización no lineal (sin postular colapso).
Invarianza relativista
Análisis matemático que muestra cómo la teoría es consistente con experimentos tipo Michelson–Morley y con la invariancia operacional local bajo supuestos razonables.
Invarianza relativista y restricciones experimentales en la Cosmología del Quarkbase
Demuestra que la simetría de Lorentz surge de manera local y efectiva en el campo fundamental del Quarkbase, y que el modelo resulta plenamente compatible con las pruebas experimentales más precisas de la relatividad, según los límites actuales del Standard-Model Extension (SME).
Quarkbase Teorisinin Görelilik Değişmezliğinin Yeniden Doğrulanması: Ayrıntılı Matematiksel Analiz
Bu çalışma, Quarkbase Kozmolojisi'nin teorik çerçevesinin gözden geçirilmesi ve matematiksel olarak biçimlendirilmesini içermekte olup, teorinin görelilik değişmezliğiyle olan uyumluluğunu titizlikle değerlendirmeyi amaçlamaktadır.
Article Synopsis
Genesis Quarkbase A New Genesis for Physics A Manifesto for the Twenty-First Century
This work explains the origin of the fundamental forces — gravitational, electromagnetic, strong, and weak — as manifestations of a single governing principle: the global conservation of etheric volume. It reproduces atomic constants such as the Rydberg value and hydrogen binding energy, and introduces an alternative method of fission based on resonance of the etheric pressure field, equivalent in energy to conventional nuclear fission but founded on a different physical mechanism. It also predicts the next element in the periodic table (Z ≈ 155), derived from the quantized sequence of quarkbase closures.
Complex Formalism in Quarkbase Cosmology: Unified Description of Gravitational, Electromagnetic, and Quantum Interactions
This research extends the QuarkBase Cosmology into the complex domain, demonstrating that the mathematical representation through complex numbers does not alter the physical foundations of the theory but rather unifies, within a single analytical structure, the gravitational, electromagnetic, and quantum phenomena. The complex formalism allows one to express in a single function, \\( \Psi(x, t) = A e^{i(\omega t - \mathbf{k}\cdot\mathbf{x})} \\), the longitudinal (pressure) and transverse (vorticity) components of the etheric plasma, simplifying differential derivatives and revealing the intrinsic nature of the field oscillations. It is shown that Maxwell’s equations can be reformulated as a complex wave equation of the etheric plasma, in which the real part represents electric pressure and the imaginary part magnetic vorticity, while the formalism strictly preserves Lorentz invariance. Finally, the framework is applied to the nucleus–electron resonance in hydrogen, deriving its coupling frequency directly from the phase conditions of the complex field and demonstrating the coherence of the QuarkBase model from the subatomic to the relativistic scale.
Empirical evidence for the existence of an etheric vacuum exhibiting plasmatic properties
This study presents an empirical and theoretical framework supporting the ex- istence of an etheric vacuum with plasmatic characteristics, as predicted by the QuarkBase Cosmology. Using the historical parameters of Tonomura’s 1989 single-electron double-slit experiment, we reproduce the observed interference patterns under the assumption that the vacuum behaves as a continuous pres- sure field (Ψ) rather than as an empty background. The model introduces two measurable parameters—the screening length (λ) and the decoherence rate (Γφ)—which describe, respectively, the attenuation of the pressure wave through the etheric medium and the loss of coherence induced by detector coupling. Numerical simulations yield λ ≈ 5 m and Γφ ≈ 80 s−1, providing an accu- rate quantitative match to Tonomura’s recorded interference build-up while offer- ing a causal, physically interpretable mechanism. The results demonstrate that the QuarkBase formulation can reproduce the same experimental data as stan- dard quantum mechanics without invoking non-causal collapse postulates. Instead, the interference pattern arises from the redistribution of etheric pressure within a frictionless but compressible medium, suggesting that space itself possesses measurable mechanical structure.
Quantum Entanglement in Quarkbase Cosmology
Proposes that quantum entanglement is a consequence of shared pressure channels in the plasma ether, explaining instantaneous correlations without superluminal transmission.
The Next Electromagnetic Revolution: Maxwell’s Equations in the Framework of Quarkbase Cosmology
The Quarkbase theory reformulates the foundations of electromagnetic interaction by interpreting classical fields not as abstract entities in empty space, but as pressure distributions within a continuous, frictionless plasma that permeates the universe. In this framework, Maxwell’s equations acquire a physical substrate: they describe the reorganization of pressure lines in this hidden medium rather than mere mathematical relations among charges and currents. This reinterpretation preserves the predictive power of classical electromagnetism while providing a consistent field-based foundation for potential extensions and experimental tests.
Simultaneous Enhancement of Electrical and Thermal Conductivity in Graphene through Excitation of the Etheric Longitudinal Mode
Within the framework of the Quarkbase Cosmology, electromagnetic and transport phenomena arise from longitudinal pressure waves in an etheric medium described by the scalar field Ψ(x, t). When an excitation in the terahertz or mid-infrared range (10–60 THz) couples resonantly to the longitudinal mode of this field, the coherence of both charge and heat carriers in graphene increases simultaneously. The predicted result is a reversible and correlated enhancement of the electrical conductivity σ and the thermal conductivity κ, a distinctive signature of the etheric longitudinal mode acting as a unifying coupling channel.
Curvature-Tunable Absorbance in Graphene: A Quarkbase-Cosmology Prediction
Within the framework of Quarkbase Cosmology, electromagnetic propagation arises from longitu- dinal pressure waves of a frictionless etheric plasma (Ψ-field). This theory predicts that the universal optical absorbance of monolayer graphene (A ≈ πα) should vary linearly with biaxial strain or mean curvature, due to changes in the local density of etheric pressure channels that guide the propagation of light. The expected dependence is ∆A/A ≃ 10−3–10−2 per % strain. Verification of this small but measurable effect would provide a direct falsifiable test of the Quark- base description of electromagnetic phenomena as pressure dynamics in an incompressible etheric medium.
The Quarkbase Cosmology Explanation of Superconductivity and Thermal Hyperconductivity in Graphene
This work presents a unified mechanism for superconductivity and thermal hyperconductivity in graphene within the framework of Quarkbase Cosmology (QBC), which models space as a frictionless etheric plasma governed by a scalar pressure field Ψ(x,t). In this view, graphene acts as a two-dimensional resonant cavity for Ψ, where phase coherence produces nondissipative electric currents without requiring Cooper pairing. An effective Ginzburg–Landau formulation and a Berezinskii–Kosterlitz–Thouless analysis yield critical temperatures of 1–10 K, consistent with experimental data. The same Ψ-field coherence explains graphene’s extraordinary thermal conductivity (>5000 W/m·K) as pressure-energy transport within the etheric medium. Overall, the work unifies graphene’s electrical and thermal behavior as two observable manifestations of phase and amplitude coherence in the underlying Ψ field.
Etheric Vacuum Pressure Sensor (SEP-V1): an interferometric system for detecting and converting energy through pressure gradients of the Ψ field
The SEP-V1 proposes an experimental device capable of detecting, amplifying, or eventually converting variations in the pressure of the Ψ field into measurable changes in optical phase or intensity. This system enables the experimental validation of dynamic anisotropies in vacuum density and allows the exploration of their potential energy conversion.
Coherent Pressure Quarkic Battery (Ψ-Cell)
This study reports the design and experimental validation of a Coherent Pressure Quarkic Battery (Ψ-Cell), a solid-state device that converts pressure fields of the etheric plasma into electric potential within multilayer graphene–dielectric structures. Exploiting the coherence of the scalar field Ψ, the system produces a voltage proportional to the pressure gradient without chemical or mechanical reactions. The prototype, comprising 500 active layers and a pressure-dependent RLC model with PLL–MPPT control, achieved 1–5 W output power, over 90 % efficiency, and excellent thermal stability (ΔT < 5 °C). These results demonstrate a new class of solid-state energy storage based on coherent vacuum pressure for ultra-low-dissipation electronics and autonomous quarkic energy systems.
The Geometry of Galaxies
Explores how the structure of galaxies is interpreted in terms of plasma ether pressure and global volume conservation. Suggests that spiral distribution and flattening result from Ψ field stresses.
Redshift in Quarkbase Theory
Reinterprets redshift as an effect of variations in plasma ether density and pressure wave propagation, rather than metric expansion of space.
Superclusters in Quarkbase Theory
Presents a model for supercluster formation through redistributions of ether pressure, without invoking dark matter as the primary explanation.
Hawking Radiation in Quarkbase Cosmology
Offers an alternative interpretation of Hawking radiation, linking it to pressure redistributions in the plasma ether around event horizons.
Microwave Background in Quarkbase Cosmology
Explains the cosmic microwave background as an equilibrium state of the plasma ether, rather than a thermal remnant of the Big Bang. Predicts anisotropies related to pressure fluctuations.
Quasars in Quarkbase Cosmology
Interprets quasars as high-energy resonators where ether pressure lines produce intense and persistent emissions, without requiring extreme accretion.
CMB Expansion in Quarkbase Extended Theory
Proposes that apparent signals of cosmic expansion in the CMB are due to density variations in the plasma ether, reinterpreting observations without an inflationary Big Bang.
Explaining Quark Flavors and Masses through Quarkbase Cosmology
It explains the structure of matter by modeling quarks as resonant systems composed of fundamental vibrating units, and provides a framework for understanding mass, flavor, and the dynamic nature of the quantum vacuum.
Biomedical Applications
Biomedical Advances with Quarkbase Theory
Explores potential biomedical applications of the theory, including interpretations of cellular resonance, molecular dynamics, and proposals for diagnosis or therapy based on the plasma ether.
Biomedical Applications: Cancer and Quarkbase Cosmology
Analyzes the dynamics of cancer cells from the plasma ether perspective, suggesting alternative models of proliferation and potential therapeutic research pathways.
Predicciones & Aplicaciones
Resumen de las predicciones observables y desarrollos tecnológicos potenciales extraídos del marco teórico.
- Ondas de presión etérica: posibles señales en detectores de precisión y en fenómenos astrofísicos (púlsares, FRBs).
- Correcciones a la gravitación: desviaciones del 1/r^2 a escalas de apantallamiento λ.
- Tecnologías: propulsión avanzada, computación plasmónica, sensores indirectos basados en acoplo al plasma.
Contacto y colaboración
Apoya esta investigación
Puedes colaborar mediante Bizum o PayPal para ayudar a mantener este proyecto independiente de cosmología.
Donar con PayPal